anatomy
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
- Teach Me Anatomy - The Vertebral Column
- Cedars-Sinai - Anatomy of the Spine
- National Center for Biotechnology Information - Vertebral Column
- Biology LibreTexts - Vertebral Column
- National Spine Health Foundation - The Spine: Anatomy and Function
- Pressbooks - Boundless Anatomy and Physiology - The Vertebral Column
- Cleveland Clinic - Spine Structure and Function
Also known as: backbone, spinal column, spine
Written and fact-checked by
The Editors of Encyclopaedia Britannica
Last Updated: •Article History
- Also called:
- spinal column, spine, or backbone
- Related Topics:
- coccyx
- cervical curve
- sacral curve
- intervertebral foramen
- lumbar curve
See all related content
vertebral column, in vertebrate animals, the flexible column extending from neck to tail, made of a series of bones, the vertebrae. The major function of the vertebral column is protection of the spinal cord; it also provides stiffening for the body and attachment for the pectoral and pelvic girdles and many muscles. In humans an additional function is to transmit body weight in walking and standing.
Each vertebra, in higher vertebrates, consists of a ventral body, or centrum, surmounted by a Y-shaped neural arch. The arch extends a spinous process (projection) downward and backward that may be felt as a series of bumps down the back, and two transverse processes, one to either side, which provide attachment for muscles and ligaments. Together the centrum and neural arch surround an opening, the vertebral foramen, through which the spinal cord passes. The centrums are separated by cartilaginous intervertebral disks, which help cushion shock in locomotion.
Vertebrae in lower vertebrates are more complex, and the relationships of their parts to those of higher animals are often unclear. In primitive chordates (e.g., amphioxus, lampreys) a rodlike structure, the notochord, stiffens the body and helps protect the overlying spinal cord. The notochord appears in the embryos of all vertebrates in the space later occupied by the vertebral bodies—in some fish it remains throughout life, surrounded by spool-shaped centrums; in other vertebrates it is lost in the developed animal. In primitive chordates the spinal cord is protected dorsally by segmented cartilages—these foreshadow the development of the neural arch of true vertebrae.
Britannica QuizFacts You Should Know: The Human Body QuizFish have trunk and caudal (tail) vertebrae; in land vertebrates with legs, the vertebral column becomes further subdivided into regions in which the vertebrae have different shapes and functions. Crocodilians and lizards, birds, and mammals demonstrate five regions: (1) cervical, in the neck, (2) thoracic, in the chest, which articulates with the ribs, (3) lumbar, in the lower back, more robust than the other vertebrae, (4) sacral, often fused to form a sacrum, which articulates with the pelvic girdle, (5) caudal, in the tail. The atlas and axis vertebrae, the top two cervicals, form a freely movable joint with the skull.
The numbers of vertebrae in each region and in total vary with the species. Snakes have the greatest number, all very similar in type. In turtles some vertebrae may be fused to the shell (carapace); in birds all but the cervical vertebrae are usually fused into a rigid structure, which lends support in flight. Most mammals have seven cervical vertebrae; size rather than number account for the variations in neck length in different species. Whales show several specializations—the cervical vertebrae may be either much reduced or much increased in number, and the sacrum is missing. Humans have 7 cervical, 12 thoracic, 5 lumbar, 5 fused sacral, and 3 to 5 fused caudal vertebrae (together called the coccyx).
The vertebral column is characterized by a variable number of curves. In quadrupeds the column is curved in a single arc (the highest portion occurring at the middle of the back), which functions somewhat like a bow spring in locomotion. In humans this primary curve is modified by three more: (1) a sacral curve, in which the sacrum curves backward and helps support the abdominal organs, (2) an anterior cervical curve, which develops soon after birth as the head is raised, and (3) a lumbar curve, also anterior, which develops as the child sits and walks. The lumbar curve is a permanent characteristic only of humans and their bipedal forebears, though a temporary lumbar curve appears in other primates in the sitting position. The cervical curve disappears in humans when the head is bent forward but appears in other animals as the head is raised.
In humans the structure and function of the vertebral column can be affected by certain diseases, disorders, or injuries. Examples include scoliosis, lordosis, and kyphosis, which are deviations from the normal spinal curvature; degenerative diseases, such as osteoarthritis and Baastrup disease (kissing spine syndrome); and tuberculosis of the spine (Pott disease), which is caused by infection of the vertebral column by Mycobacterium tuberculosis.
Get Unlimited Access
Try Britannica Premium for free and discover more.
Subscribe
The Editors of Encyclopaedia BritannicaThis article was most recently revised and updated by Kara Rogers.